凝胶电泳法(SDS-PAGE)测定饲料添加剂溶菌酶二聚体的含量

张文刚¹ 张 好¹ 孙冰清¹ 姜 芹¹ 顾 欣¹ 黄士新^{1*} 达列亚·阿合买提² 1.上海市兽药饲料检测所,上海 201103;2.新疆兽药饲料监察所,乌鲁木齐 830063

摘要 溶菌酶二聚体标准溶液在 0.1~1.0 mg/mL 范围内具有良好的线性,线性方程: Y=1.99×10⁻⁵X-0.0708, R>0.99。精密度试验结果显示,采用凝胶电泳法对饲料添加剂中溶菌酶二聚体的含量进行测定,其含量为 32.19%~34.91%,日内相对标准偏差为 1.35%~1.73%,日间相对标准偏差为 1.82%,结果表明 SDS-PAGE 方法测定溶菌酶二聚体具有试验操作简单、结果稳定可靠的特点,适用于饲料添加剂溶菌酶二聚体含量的测定。

关键词 饲料添加剂;溶菌酶二聚体;凝胶电泳法

溶菌酶二聚体是以鸡蛋清溶菌酶单体为原料,将单体溶菌酶聚合为溶菌酶二聚体,分子质量约为28.8 ku。溶菌酶二聚体分子中2个相邻分子之间的结合方式为共价键结构,其不但保留了单体溶菌酶的酶活性,而且还产生了新的免疫活性。溶菌酶二聚体通过显著增强腹腔巨噬细胞的吞噬率及其吞噬指数,提高血液中性细胞的吞噬率,从而提高断奶仔猪的非特异性免疫功能。这种特性可用于改善仔猪肠道发育,促进营养物质吸收,提高断奶仔猪增重。溶菌酶二聚体作为新型的饲料添加剂产品,其二聚体比例控制在大于总含量的30%。目前,溶菌酶二聚体常用的检测方法有高效液相色谱法和电泳法,与液相方法相比,电泳法具有成本低、操作简单、重复性高等特点[1-2]。

1 材料与方法

1.1 试 剂

柠檬酸、柠檬酸三钠,均购自上海凌峰化学试剂有限公司;三氯乙酸,购自上海凌峰化学试剂有限公司;EDTA、氢氧化钠、丙酮,均购自上海凌峰化

学试剂有限公司;溶菌酶二聚体对照品,纯度99.2%,溶菌酶二聚体饲料添加剂(批号为0880、0881、0882、0883),由上海艾魁英生物科技有限公司提供;4-15%Resolving Gel 小型预制胶、10×Tris/Glycine/SDS 电泳缓冲液、Dual Color Marker,均购自伯乐生命医学产品(上海)有限公司;上样缓冲液(自制,4×Laemmli Sample Buffer,购自伯乐生命医学产品(上海)有限公司;β-巯基乙醇,购自上海阿拉丁生化科技股份有限公司);考马斯亮蓝蛋白胶快速染色液,购自北京索莱宝科技有限公司。

1.2 仪器

离心机,德国 Eppendorf 公司;涡旋振荡仪,美国 Talboys 公司;BIO-RAD 电泳仪、BIO-RAD 成像系统,美国 BIO-RAD 公司;Mettler Toledo AL104型电子天平,瑞士梅特勒公司。

1.3 试验方法

1)标准溶液及样品的制备。①标准溶液制备。精密称取溶菌酶二聚体标准品 10 mg, 移取纯化水 1 mL 溶解制备成浓度为 10 mg/mL 的标准溶液,稀释至 2 mg/mL,备用。②样品制备。取 180 mg 样品

收稿日期:2021-02-23

基金项目:上海市科技兴农项目(2019-02-08-00-03-F01131)

* 通讯作者

张文刚,男,1979年生,硕士,高级畜牧师。

溶于 30 mL 0.1 mol/L 的柠檬酸-柠檬酸钠缓冲液 (pH 6.6),加 3 mL 0.5 mol/L EDTA,磁力搅拌至 完全溶解,然后加入 15 mL 3 mol/L 氯化钠溶液,继续搅拌 30 min,用氢氧化钠溶液调节 pH 至 11.8。离心,弃上清,向沉淀中加入 1 mL 柠檬酸-柠檬酸钠缓冲液(pH 6.6),充分震荡 30 min 至沉淀复溶。转移至 2 mL 离心管,加 1 mL 30%三氯乙酸溶液,充分震荡离心 10 min,弃上清,加 1 mL 丙酮洗涤,离心弃上清,丙酮重复洗涤 1次,置于通风橱内吹干。取 25 μL 上样缓冲液,加入 75 μL 纯水,充分吹洗溶解,备用。

2)标准曲线。分别取标准溶液 1、2、4、6、10 μL,加入 5 μL 上样缓冲液,纯水补足至 20 μL,终浓度分别为 0.1、0.2、0.4、0.6、1.0 mg/mL,充分混匀,沸水煮 1 min,5 000 r/min 离心 1 min。

3)上样。将预制胶放入电泳槽中,并灌入新配置的电泳缓冲液。用微量进样器分别加入 Marker、溶菌酶二聚体标准溶液和试样各 10 μL,电泳条件为 15 mA 恒电流。

4)染色与脱色。将 2 块玻璃板取出,用刀片轻轻插入凹槽玻璃的顶部与另一玻璃板之间的缝隙,轻轻向上撬,上层玻璃轻轻撬开。使用马斯亮蓝蛋白胶快速染色液进行染色,纯水脱色至背景无色后将凝胶平整放置于紫外/白光转换板上,拍照扫描条带,分析二聚体。

5)精密度试验。取批号为 0880 的溶菌酶二聚

体样品,按本文材料与方法 1.3 中②的方法处理后进行电泳分析,连续测定 6 次,连续检测 3 d,计算方法的日内精密度和日间精密度。

6)实样检测。分别取上海艾魁英生物科技有限公司生产的批号为 0881、0882、0883 3 批次样品,按本文材料与方法 1.3 中②的方法处理后进行电泳分析。

2 结果与分析

2.1 标准曲线和线性方程结果

试验结果表明,溶菌酶二聚体标准溶液 0.1~1.0~mg/mL 范围内具有良好的线性,其线性方程为 $Y=1.99\times10^{-5}X-0.0708$, $R^2=0.9945$,结果见图 1。

2.2 精密度实验结果

试验结果显示,样品中溶菌酶二聚体的含量为32.19%~34.91%; 日内相对标准偏差为1.35%~1.73%,日间相对标准偏差为1.82%,具体试验结果见表1。

2.3 实样检测结果

试验结果显示,批号 0881、0882、0883 样品中溶菌酶二聚体的含量为 31.19%~32.89%;相对偏差均低于 3%,具体试验结果见表 2。

3 结 论

本试验分别对 SDS-PAGE 法测定溶菌酶二聚体的电泳条件、染色液选择、标准曲线以及精密度

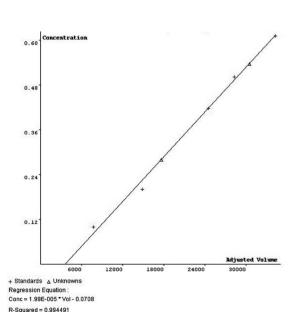


图 1 溶菌酶二聚体标准曲线及线性方程结果

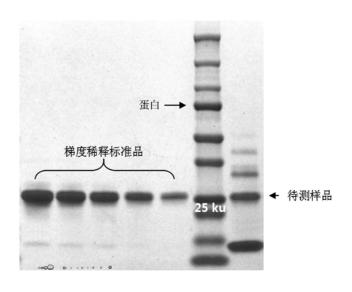


图 2 溶菌酶二聚体线性试验电泳图

表 1 溶菌酶二聚体含量测定精密度试验结果				
项目	第1天	第2天	第3天	
含量	33.43	33.96	34.89	
	33.47	34.28	34.25	
	33.65	33.84	34.91	
	32.19	33.16	33.86	
	33.81	33.92	33.69	
	33.29	33.17	33.63	
日内 RSD	1.73	1.35	1.70	
目间 RSD		1.82		

表 2 实际样品中溶菌酶二聚体含量测定结果				
批号	溶菌酶二聚体含量		和41/57	
	测定值	平均值	相对偏差	
0881	30.52	31.19	2.13	
	31.85			
0882	33.72	32.89	2.56	
	32.05			
0883	33.15	32.41	2.28	
	31.67			

等因素进行了研究,结果发现采用 15 mA 恒电流进行蛋白的浓缩分离、快速考马斯亮蓝进行蛋白胶染色,试验时间较短且溶菌酶二聚体条带较为清晰。线性试验数据表明,溶菌酶二聚体标准溶液在1.0 mg/mL 以下具有较好的线性关系。精密度实验以及实样检测均表明,SDS-PAGE 方法测定饲料添加剂溶菌酶二聚体含量具有操作简单、准确可靠等特点,适用于饲料添加剂溶菌酶二聚体质量分析。

参考文献

- [1] 史瑾,杨小琳,赵金礼,等.Tricine-SDS-PAGE 电泳定量检测人体泪液中溶菌酶含量[J].临床医学研究与实践,2018,36(2):4-6.
- [2] 韩奕奕,黄菲菲,王建军.凝胶电泳法(SDS-PAGE)测定乳与乳制品中溶菌酶二聚体的含量[J].乳业科学与技术,2009,135(2):74-77.

【责任编辑:胡 敏】